File Revision Date: 20 September 2019

Objective Questions CLASS: 9th : Maths

For NCERT Solutions Previous Years Chapterwise QB visit www.cbse.online or whatsapp at 8905629969

Number Systems

OBJECTIVE QUESTIONS

- The value of x, when $(2)^{x+4} \cdot (3)^{x+1} = 288$ is

(b) -1

(c) 0

(d) None

Ans: (a) 1

$$2^{x+4} \cdot 3^{x+1} = 2^5 \cdot 3^2$$
$$x = 1$$

- The rational number between 1/2 and 1/3 is
 - (a) 2/5

(b) 1/5

(c) 3/5

(d) 4/5

Ans: (a) 2/5

Since,
$$\frac{1}{2} = 0.5$$
,

$$\frac{1}{3} = 0.\overline{3}$$

Rational number lies between $0.\overline{3}$ and 0.5 is

$$0.4 = \frac{4}{10} = \frac{2}{5}$$

- Set of natural numbers is a subset of
 - (a) Set of even numbers
 - (b) Set of odd numbers
 - (c) Set of composite numbers
 - (d) Set of real numbers

Ans: (d) Set of real numbers

Since, set of real numbers contains all natural numbers, integers, rational and irrational numbers.

- $0.12\overline{3}$ can be expressed in rational form as
 - (a) $\frac{900}{111}$

(c) $\frac{123}{10}$

(d) $\frac{121}{900}$

Ans: (b) $\frac{111}{900}$

x = 0.12333........(1)

Multiply (1) by 10 on both sides, we get

10x = 1.2333.......(2)

Subtracting (1) from (2), we get

$$9x = 1.11$$

$$x = 111/900$$

The fraction $\frac{2(\sqrt{2}+\sqrt{6})}{3(\sqrt{2}+\sqrt{3})}$ is equal to

- (a) $\frac{2\sqrt{2}}{3}$
- (b) 1
- (c) $\frac{2\sqrt{3}}{3}$
- (d) $\frac{4}{3}$

Ans: (d) $\frac{4}{2}$

Let,
$$y = \frac{2(\sqrt{2} + \sqrt{6})}{3(\sqrt{2} + \sqrt{3})}$$

Squaring (1) both sides, we get

$$y^{2} = \left(\frac{2(\sqrt{2} + \sqrt{6})}{3(\sqrt{2} + \sqrt{3})}\right)^{2} = \frac{4}{9}\left(\frac{(\sqrt{2} + \sqrt{6})^{2}}{2 + \sqrt{3}}\right)$$
$$= \frac{4}{9}\left(\frac{(2 + 6 + 2\sqrt{12})}{2 + \sqrt{3}}\right)$$
$$= \frac{4}{9}\left(\frac{(8 + 2\sqrt{4} \times 3)}{2 + \sqrt{3}}\right)$$
$$= \frac{16}{9}\left(\frac{2 + \sqrt{3}}{2 + \sqrt{3}}\right) = \frac{16}{9}$$

Taking square root, we ge

$$y = 4/3$$

- **6.** If $x \ge 0$, then $\sqrt{x\sqrt{x\sqrt{x}}} =$
 - (a) $x\sqrt{x}$

(b) $x^4\sqrt{x}$

(c) $\sqrt[8]{x}$

(d) $\sqrt[8]{x^7}$

Ans : (d) $\sqrt[8]{x^7}$

$$\sqrt{x\sqrt{x\sqrt{x}}} = \sqrt{x(x^{3/2})^{1/2}} = \sqrt{x \cdot (x)^{3/4}}$$
$$= \sqrt{x^{7/4}} = x^{7/8} = \sqrt[8]{x^7}$$

Download All PDF files from www.rava.org.in.

- 7. $\frac{7\sqrt{3}}{(\sqrt{10}+\sqrt{3})} \frac{2\sqrt{5}}{(\sqrt{6}+\sqrt{5})} \frac{3\sqrt{2}}{(\sqrt{15}+3\sqrt{2})} =$

(c) 1/2

Ans: (a) 1

$$\begin{split} \frac{7\sqrt{3}}{(\sqrt{10}+\sqrt{3})} - & \frac{2\sqrt{5}}{(\sqrt{6}+\sqrt{5})} - \frac{3\sqrt{2}}{(\sqrt{15}+3\sqrt{2})} \\ = & \frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \frac{\sqrt{10}-\sqrt{3}}{\sqrt{10}-\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} \\ & \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} \times \frac{\sqrt{15}-3\sqrt{2}}{\sqrt{15}-3\sqrt{2}} \\ = & \frac{7\sqrt{3}(\sqrt{10}-\sqrt{3})}{7} - 2\sqrt{5}(\sqrt{6}-\sqrt{5}) \end{split}$$

 $-\frac{3\sqrt{2}(\sqrt{15}-3\sqrt{2})}{-3}$

$$= \sqrt{30} - 3 - 2\sqrt{30} + 10 + \sqrt{30} - 6 = 1$$

- **8.** The rationalising factor of $\sqrt[5]{a^2b^3c^4}$ is
 - (a) $\sqrt[5]{a^3b^2c}$
- (b) $\sqrt[4]{a^3b^2c}$
- (c) $\sqrt[3]{a^3b^2c}$
- (d) $\sqrt{a^3b^2c}$

Ans: (a) $\sqrt[5]{a^3b^2c}$

Since, multiplication of $\sqrt[5]{a^2b^3c^4}$ by $\sqrt[5]{a^3b^2c}$ gives rational number.

R.F. of $\sqrt[5]{a^2b^3c^4} = \sqrt[5]{a^3b^2c}$

- **9.** Four rational numbers between 3 and 4 are:
 - (a) $\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$
- (b) $\frac{13}{5}$, $\frac{14}{5}$, $\frac{16}{5}$, $\frac{17}{5}$
- (c) 3.1, 3.2, 4.1, 4.2
- (d) 3.1, 3.2, 3.8, 3.9

Ans: (d) 3.1, 3.2, 3.8, 3.9

To find four rational numbers between 3 and 4. $\frac{3\times5}{5}$ and $\frac{4\times5}{5}$

 $\frac{15}{5}$ and $\frac{20}{5}$

Between $\frac{15}{5}$ and $\frac{20}{5}$ lies $\frac{16}{5}, \frac{17}{5}, \frac{18}{5}, \frac{19}{5}$

Now, from the given options (a) and (b) does not contain rational number between 3 and 5.

- (c) has 4.1 and 4.2 that does not lie between 3 and 4.
- **10.** Value of x satisfying $\sqrt{x+3} + \sqrt{x-2} = 5$, is
 - (a) 0

(b)

(c) 8

(d) 9

Ans: (a) 6

x = 6 satisfies the given equation

- 11. If both 'a' and 'b' are rational numbers, then 'a' and 'b' from $\frac{3-\sqrt{5}}{3+2\sqrt{5}}=a\sqrt{5}-b$, respectively are
 - (a) $\frac{9}{11}, \frac{19}{11}$
- (b) $\frac{19}{11}, \frac{9}{11}$
- (c) $\frac{2}{11}, \frac{8}{11}$
- (d) $\frac{10}{11}, \frac{21}{11}$
- (a) $\frac{9}{11}$, $\frac{19}{11}$

We have,

$$\frac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = a\sqrt{5} - b$$

$$\frac{3 - \sqrt{5}}{3 + 2\sqrt{5}} \times \frac{3 - 2\sqrt{5}}{3 - 2\sqrt{5}} = a\sqrt{5} - b$$
$$a\sqrt{5} - b = \frac{(3 - \sqrt{5})(3 - 2\sqrt{5})}{(3)^2 - (2\sqrt{5})^2}$$

or

$$= \frac{(3 - \sqrt{5})(3 - 2\sqrt{5})}{-11}$$

$$= \frac{9 - 6\sqrt{5} - 3\sqrt{5} + 10}{-11}$$

$$= \frac{19 - 9\sqrt{5}}{-11}$$

$$=\frac{9\sqrt{5}}{11}-\frac{19}{11}$$

On comparing, we get

$$a = \frac{9}{11}, b = \frac{19}{11}.$$

- 12. Simplify: $\frac{2^{n+4} 2(2^n)}{2(2^{n+3})}$
 - (a) $2^{n+1} \frac{1}{8}$
- (b) -2^{n+1}
- (c) $1-2^n$
- (d) 7/8

Ans: (d) 7/8

$$\frac{2^{n+4} - 2(2^n)}{2(2^{n+3})} = \frac{2^{n+4} - 2^{n+1}}{2^{n+4}} = 1 - \frac{2^{n+1}}{2^{n+4}}$$
$$= 1 - 2^{n+1-n-4} = 1 - 2^{-3}$$
$$= 1 - \frac{1}{8} = \frac{7}{8}$$

Add 89056 29969 in Your Class Whatsapp Group to Get All PDF Files.

- 13. A rational number equivalent to a rational number $\frac{7}{10}$ is
 - (a) $\frac{17}{119}$

(b) $\frac{14}{57}$

(c) $\frac{21}{38}$

(d) $\frac{21}{57}$

Ans: (d) $\frac{21}{57}$

Simplest form of $\frac{17}{119} = \frac{17}{119}$

Simplest form of $\frac{14}{57} = \frac{14}{57}$

Simplest form of $\frac{21}{38} = \frac{21}{38}$

Simplest form of $\frac{21}{57} = \frac{7}{19}$

- **14.** The numerator of $\frac{a + \sqrt{a^2 b^2}}{a \sqrt{a^2 b^2}} + \frac{a \sqrt{a^2 b^2}}{a + \sqrt{a^2 b^2}}$ is
 - (a) a^2

- (b) b^2
- (c) $a^2 b^2$
- (d) $4a^2 2b^2$

Ans: (d) $4a^2 - 2b^2$

$$\frac{a + \sqrt{a^2 - b^2}}{a - \sqrt{a^2 - b^2}} + \frac{a - \sqrt{a^2 - b^2}}{a + \sqrt{a^2 - b^2}}$$

$$= \frac{a^2 + a^2 - b^2 + 2a\sqrt{a^2 - b^2}}{a^2}$$

$$+ a^2 + a^2 - b^2 - 2a\sqrt{a^2 - b^2}$$

$$-(a^2 - b^2)$$

$$= \frac{4a^2 - 2b^2}{a^2}$$

- 15. The ascending order of the surds $\sqrt[3]{2}$, $\sqrt[6]{3}$, $\sqrt[9]{4}$ is
 - (a) $\sqrt[9]{4}, \sqrt[6]{3}, \sqrt[3]{2}$
- (b) $\sqrt[9]{4}, \sqrt[3]{2}, \sqrt[6]{3}$
- (c) $\sqrt[3]{2}$, $\sqrt[6]{3}$, $\sqrt[9]{4}$
- (d) $\sqrt[6]{3}$, $\sqrt[9]{4}$, $\sqrt[3]{2}$

Ans: (a) $\sqrt[9]{4}$, $\sqrt[6]{3}$, $\sqrt[3]{2}$

Surds are $(2)^{\frac{1}{3}}, (3)^{\frac{1}{6}}, (4)^{\frac{1}{9}}$ L.C.M. of 3, 6, 9 is 18

 $= (2)^{\frac{1}{3} \times \frac{6}{6}}, (3)^{\frac{1}{6} \times \frac{3}{3}}, (4)^{\frac{1}{9} \times \frac{2}{2}}$ $= (2^{6})^{\frac{1}{18}}, (3^{3})^{\frac{1}{18}}, (4^{2})^{\frac{1}{18}} = (64)^{\frac{1}{18}}, (27)^{\frac{1}{18}}, (16)^{\frac{1}{18}}$ $= (2)^{\frac{1}{3}} > (3)^{\frac{1}{6}} > (4)^{\frac{1}{9}}$

16. The value of 0.423 is

(a)
$$\frac{423}{1000}$$

(b)
$$\frac{423}{100}$$

(c)
$$\frac{423}{990}$$

(d)
$$\frac{419}{990}$$

Ans: (a)
$$\frac{423}{1000}$$

17. Which of the following statement is not true?

- (a) Between two integers, there exist infinite number of rational numbers.
- (b) Between two rational numbers, there exist infinite number of integers
- (c) Between two rational numbers, there exist infinite number of rational numbers.
- (d) Between two real numbers, there exists infinite number of real numbers.

Ans: (b) Between two rational numbers, there exist infinite number of integers

Download All PDF files from www.rava.org.in.

18. Rationalizing factor of $(2+\sqrt{3})=$

(a)
$$2 - \sqrt{3}$$

(b)
$$\sqrt{3}$$

(c)
$$2 + \sqrt{3}$$

(d)
$$3 + \sqrt{3}$$

Ans: (a)
$$2 - \sqrt{3}$$

19. Which of the following expressions is same as

(a)
$$\sqrt[3]{2} + 1$$

(b)
$$\sqrt[3]{4} + 1$$

(c)
$$\sqrt[3]{4} + \sqrt[3]{2} + 1$$

(d)
$$\sqrt[3]{4} + 2\sqrt[3]{2} + 1$$

Ans: (c)
$$\sqrt[3]{4} + \sqrt[3]{2} + 1$$

$$y = \frac{1}{(2)^{1/3} - 1}$$

$$a^{3}-b^{3}=(a-b)(a^{2}+b^{2}+ab)$$

$$a = (2)^{1/3}, b = 1, \text{ we get}$$

$$y = \frac{1(2^{2/3} + 1 + 2^{1/3})}{((2)^{1/3} - 1)(2^{2/3} + 1 + 2^{1/3})}$$
$$= \frac{\sqrt[3]{4} + \sqrt[3]{2} + 1}{((2)^{1/3})^3 - (1)^3}$$

20. If $m = \frac{cab}{a-b}$, then b equals

(a)
$$\frac{m(a-b)}{ca}$$

(b)
$$\frac{cab - ma}{-m}$$

(c)
$$\frac{1}{1+c}$$

(d)
$$\frac{ma}{m+cc}$$

Ans: (d)
$$\frac{ma}{m+ca}$$

 $m = \frac{cab}{a-b}$ (given)= $ma - mb = cab$
 $m(a-b) = cab$

$$m(a-b) = cab$$

$$ma - mb = cab$$

$$ma - mo = cao$$

$$cab + mb = ma$$

$$b(m+ca) = ma$$

$$b = ma/(m + ca)$$

21. Rational number between $\sqrt{2}$ and $\sqrt{3}$ is

(a)
$$\frac{\sqrt{2} + \sqrt{3}}{2}$$

(b)
$$\frac{\sqrt{2} \times \sqrt{3}}{2}$$

(c) 1.5

(d) 1.8

Ans: (c) 1.5

Since,
$$\sqrt{2} = 1.414...$$

$$\sqrt{3} = 1.732....$$

Rational number between $\sqrt{2}$ and $\sqrt{3}$ is 1.5.

22. The greater between $\sqrt{17} - \sqrt{12}$ and $\sqrt{11} - \sqrt{6}$ is.

(a)
$$\sqrt{17} - \sqrt{12}$$

(b)
$$\sqrt{11} - \sqrt{6}$$

(c) Both are equal

(d) Cannot compare

Ans: (b)
$$\sqrt{11} - \sqrt{6}$$

Since, difference of smaller surds is greater than difference of bigger surds.

23. Rationalizing factor of $1+\sqrt{2}+\sqrt{3}$

(a)
$$1 + \sqrt{2} - \sqrt{3}$$

(d)
$$1 + \sqrt{2} + \sqrt{3}$$

Ans: (a)
$$1 + \sqrt{2} - \sqrt{3}$$

24. $1/(\sqrt{3}-\sqrt{2})$ is not equal to

(a)
$$\sqrt{3} + \sqrt{2}$$

(b)
$$\sqrt{2}/(\sqrt{6}-2)$$

(c)
$$(\sqrt{3} - \sqrt{2})/(5 - 2\sqrt{6})$$
 (d) $\sqrt{3}/(9 - \sqrt{6})$

(d)
$$\sqrt{3}/(9-\sqrt{6})$$

Ans: (d)
$$\sqrt{3}/(9-\sqrt{6})$$

$$\sqrt{3} + \sqrt{2} = \sqrt{3} + \sqrt{2} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{1}{\sqrt{3} - \sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{6}-2} = \frac{\sqrt{2}}{\sqrt{2}(\sqrt{3}-\sqrt{2})} = \frac{1}{\sqrt{3}-\sqrt{2}}$$

$$\frac{\sqrt{3} - \sqrt{2}}{5 - 2\sqrt{6}} \times \frac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}}$$

$$=5\sqrt{3}+6\sqrt{2}-5\sqrt{2}-4\sqrt{3}$$

$$=\sqrt{3}+\sqrt{2}$$

$$\frac{\sqrt{3}}{9-\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{3}(3\sqrt{3}-\sqrt{2})} = \frac{1}{3\sqrt{3}-\sqrt{2}}$$

25. The value of $\left(\frac{x^q}{\alpha^r}\right)^{\frac{1}{qr}} \times \left(\frac{x^r}{\alpha^p}\right)^{\frac{1}{rp}} \times \left(\frac{x^p}{\alpha^q}\right)^{\frac{1}{pq}}$ is equal to

- (a) $x^{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$ (c) $x^{pq+qr+rp}$
- (b) 0

(d) 1

Ans: (d) 1

$$\left(\frac{x^q}{x^r}\right)^{\frac{1}{q^r}} \times \left(\frac{x^r}{x^p}\right)^{\frac{1}{rp}} \times \left(\frac{x^p}{x^q}\right)^{\frac{1}{pq}}$$

$$= \frac{x^{\frac{1}{r}}}{x^{\frac{1}{r}}} \times \frac{x^{\frac{1}{p}}}{x^{\frac{1}{r}}} \times \frac{x^{\frac{1}{q}}}{x^{\frac{1}{q}}} = 1$$

26. The value of $\left(\sqrt[6]{27} - \sqrt{6\frac{3}{4}}\right)^2$ equals

(a)
$$\frac{\sqrt{3}}{2}$$

(b) $\frac{3}{2}$

(c)
$$\frac{\sqrt{3}}{4}$$

(d) $\frac{3}{4}$

Ans : (d)
$$\frac{3}{4}$$

 $y = \left(\sqrt[6]{27} - \sqrt{6\frac{3}{4}}\right)^2 = \left((3^3)^{1/6} - \left(\frac{27}{4}\right)^{1/2}\right)^2$ Let, $=\left((3)^{1/2}-\left(\frac{27}{4}\right)^{1/2}\right)^2$ $=3+\frac{27}{4}-2\times(3)^{1/2}\times\frac{(3)^{3/2}}{2}$ $=\frac{39}{4}-3^2=\frac{39}{4}-9=\frac{3}{4}$

27. If
$$\left(a + \frac{1}{a}\right)^2 = 9$$
, then $a^3 + \frac{1}{a^3}$ equals

- (a) $\frac{10\sqrt{3}}{3}$ (c) 18

(d) $7\sqrt{7}$

Ans: (c) 18

Given,
$$\left(a + \frac{1}{a}\right)^2 = 9$$
$$a + \frac{1}{a} = 3 \qquad \dots (1)$$

Cubing (1) both sides, we get

$$a^{3} + \frac{1}{a^{3}} + 3\left(a + \frac{1}{a}\right) = 27$$

$$a^{3} + \frac{1}{a^{3}} = 27 - 9 = 18$$

28.
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$$
 equals

- (a) $\sqrt{2} + \sqrt{3} \sqrt{5}$
- (b) $4 \sqrt{2} \sqrt{3}$
- (c) $\sqrt{2} + \sqrt{3} + \sqrt{6} 5$ (d) $\frac{1}{2}(\sqrt{2} + \sqrt{5} \sqrt{3})$

Ans: (a) $\sqrt{2} + \sqrt{3} - \sqrt{5}$

Let,
$$y = \frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$$
 ...(1)

On rationalising (1), we get

$$y = \frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3} + \sqrt{5}} \times \frac{(\sqrt{2} + \sqrt{3} - \sqrt{5})}{(\sqrt{2} + \sqrt{3} - \sqrt{5})}$$
$$= \frac{2\sqrt{6}(\sqrt{2} + \sqrt{3} - \sqrt{5})}{(\sqrt{2} + \sqrt{3})^2 - 5}$$
$$= \frac{2\sqrt{6}(\sqrt{2} + \sqrt{3} - \sqrt{5})}{5 + 2\sqrt{6} - 5}$$
$$= \sqrt{2} + \sqrt{3} - \sqrt{5}$$

- **29.** If $25^{x-1} = 5^{2x-1} 100$, then the value of x is.
 - (a) 3

(b) 2

(c) 4

(d) 1

Ans: (b) 2

$$25^{x-1} = 5^{2x-1} - 100$$
 (given) or,
$$5^{2(x-1)} = 5^{2x-1} - 100$$
 or,
$$5^{2x-1} - 5^{2x-2} = 100$$
 Only $x = 2$, satisfy above equation.

- **30.** If $x = 2 \sqrt{3}$, then the values of $x^2 + \frac{1}{x^2}$ and $x^2 \frac{1}{x^2}$ respectively are.
 - (a) $14.8\sqrt{3}$
- (b) $-14, -8\sqrt{3}$
- (c) $14, -8\sqrt{3}$
- (d) $-14.8\sqrt{3}$

Ans: (c) $14, -8\sqrt{3}$

$$x = 2 - \sqrt{3}$$

$$\frac{1}{x} = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = 2 + \sqrt{3}$$

$$x^2 + \frac{1}{x^2} = (2 - \sqrt{3})^2 + (2 + \sqrt{3})^2$$

$$= 2(4 + 3) = 14$$
and
$$x^2 - \frac{1}{x^2} = (2 - \sqrt{3})^2 - (2 + \sqrt{3})^2$$

$$= -4\sqrt{3} - 4\sqrt{3} = -8\sqrt{3}$$

- **31.** If $4^{44} + 4^{44} + 4^{44} + 4^{44} = 4^x$, than x is
 - (a) 45

(c) 176

(d) 11

Ans: (a) 45

$$4^{44} + 4^{44} + 4^{44} + 4^{44} = 4(4)^{44} = 4^{x}$$

$$4^{44+1} = 4^{x}$$

$$4^{45} = 4^{x}$$

$$x = 45$$

- **32.** The 100^{th} root of $10^{(10^{10})}$ is
 - (a) $10^{8^{10}}$

- (b) 10^{10^8}
- (c) $(\sqrt{10})^{(\sqrt{10})^{10}}$
- (d) $10(\sqrt{10})^{\sqrt{10}}$

Ans: (b) 10^{10^8}

 $10^{(10^{10})} = 10^{10^8.10^2} (10^{10^8})^{100}$

 100^{th} root of $10^{(10^{10})}$ is 10^{10^8} .

- 33. Which of the following numbers has the terminating decimal representation?
 - (a) 1/7

(b) 1/3

(c) 3/5

(d) 17/3

Ans: (c) 3/5

Since,
$$\frac{3}{5} = 0.6$$

Option (c) is true. (all other numbers has nonterminating decimal representation).

FILL IN THE BLANK

DIRECTION: Complete the following statements with an appropriate word/term to be filled in the blank space(s).

Between two real numbers, there exists infinite number of numbers.

Ans : real

Between two rational numbers, there exist

number of rational numbers.

Ans: infinite

- **4.** An irrational number between $\frac{2}{5}$ and $\frac{3}{7}$ is Ans: $\sqrt{\frac{6}{35}}$
- **5.** 0.72737475 is number. (rational/irrational) **Ans**: irrational
- **6.** 0.578 is number. (rational/irrational) **Ans:** rational
- 7. If $x+\sqrt{5}=4+\sqrt{y}$, then x+y= (where x and y are rational)

 Ans: 9
- 8. The sum/difference of a rational and an irrational number is

Ans: irrational

- **9.** Value of a is of $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$ Ans: 2
- **10.** $\sqrt[4]{\frac{1008}{63}}$ is equal to Ans: $\left(\frac{1008}{63}\right)^{1/4} = (16)^{1/4} = (2^4)^{1/4} = 2$

Download All PDF files from www.rava.org.in.

3. TRUE/FALSE

DIRECTION: Read the following statements and write your answer as true or false.

1. Every integer is a whole number.

Ans : False

2. All rational numbers when expressed in decimal form are either terminating decimals or repeating decimals.

Ans: True

3. Every rational number is an integer.

Ans : False

4. The sum or difference of a rational number and an irrational number is an irrational.

Ans: True

5. Every natural number is a whole number.

Ans: True

6. Every rational number is a whole number.

Ans : False

7. Product of a rational and an irrational number is always irrational.

Ans: True

8. Every whole number is a natural number.

Ans : False

9. A real number is either rational or irrational.

Ans: True

10. All rational numbers can be represented by some point on the number line.

Ans: True

4. MATCHING QUESTIONS

DIRECTION: In the section, each question has two matching lists. Choices for the correct combination of elements from Column-I and Column-II are given as options (a), (b), (c) and (d) out of which one is correct.

1. Match the following:

	Column-I		Column-II
(P)	Decimal expansion of an irrational number is non-terminating and	(1)	irrational
(Q)	The sum of two numbers may be a rational number or an irrational number.	(2)	$\sqrt{5}$
(R)	A number x is called a number, if it can be written in the form $\frac{m}{n}$, where m and n are integers, $n \neq 0$	(3)	rational
(S)	An irrational number between 2 and 2.5 is	(4)	non-repeating
(T)	The value of $0.\overline{23} + 0.\overline{22}$ is	(5)	$0.\overline{45}$

Ans: P - 4, Q - 1, R - 3, S - 2, T - 5

2. Match the following:

	Column-I	Column-II	
(P)	$\left \left(\frac{81}{16} \right)^{-\frac{3}{4}} \times \left\{ \left(\frac{25}{9} \right)^{-\frac{3}{2}} \div \left(\frac{5}{2} \right)^{-3} \right\} \right $	(1)	$\frac{3}{80}$
(Q)	$\frac{\sqrt[3]{0.125} \times \sqrt[5]{(0.00032)^{-2}}}{\sqrt[5]{(0.00243)^{-3} \times (27)^{2/3}}}$	(2)	$\frac{39 + 8\sqrt{30}}{21}$
(R)	$\sqrt[4]{(81)^{-2}}$	(3)	19
(S)	$\frac{2\sqrt{6}+\sqrt{5}}{3\sqrt{5}-2\sqrt{6}}$	(4)	1

	P	Q	R	S
(a)	1	2	4	3
(b)	3	2	1	4
(c)	2	3	4	1
(d)	4	1	3	2

Ans:
$$P - 4$$
, $Q - 1$, $R - 3$, $S - 2$

$$(P) \left(\frac{81}{16}\right)^{-\frac{3}{4}} \times \left\{ \left(\frac{25}{9}\right)^{-\frac{3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right\}$$

$$= \left(\frac{3^4}{2^4}\right)^{-\frac{3}{4}} \times \left\{ \left(\frac{(5)^2}{(3)^2}\right)^{-\frac{3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right\}$$

$$= \left(\frac{3}{2}\right)^{4 \times -\frac{3}{4}} \times \left\{ \left(\frac{5}{3}\right)^{2 \times -\frac{3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right\}$$

$$= \left(\frac{2}{3}\right)^3 \times \left\{ \left(\frac{3}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 \right\}$$

$$= \frac{8}{27} \times \left(\frac{27}{125} \times \frac{125}{8}\right) = 1$$

$$(Q) \frac{\sqrt[3]{0.125} \times \sqrt[5]{(0.00032)^{-2}}}{\sqrt[5]{(0.00243)^{-3}} \times (27)^{2/3}}$$

$$= \frac{\left(\frac{25}{1000}\right)^{1/3} \times \left(\frac{32}{100000}\right)^{-2/5}}{\left(\frac{243}{100000}\right)^{-3/5} \times (3^3)^{2/3}}$$

$$= \frac{\left(\frac{5}{10}\right)^{3 \times \frac{1}{3}} \times \left(\left(\frac{2}{10}\right)^{5 \times -2/5}\right)}{\left(\frac{3}{10}\right)^{5 \times \left(-\frac{3}{5}\right)} \times 3^2} = \frac{\frac{5}{10} \times \left(\frac{2}{10}\right)^{-2}}{\left(\frac{3}{10}\right)^{-3} \times 3^2}$$

$$= \frac{\frac{5}{10} \times \left(\frac{10}{2}\right)^2}{\frac{5}{10} \times \frac{100}{4}}$$

$$= \frac{\frac{5}{10} \times \left(\frac{10}{2}\right)^2}{\left(\frac{10}{3}\right)^3 \times 3^2} = \frac{\frac{5}{10} \times \frac{100}{4}}{\frac{1000}{27} \times 9}$$
$$= \frac{5 \times 10 \times 3}{4 \times 1000} = \frac{3}{80}$$

(R)
$$(81^{-2})^{1/4} = ((9)^{-4})^{1/4} = 1/9$$

(S)
$$\frac{2\sqrt{6} + \sqrt{5}}{3\sqrt{5} - 2\sqrt{6}} \times \frac{3\sqrt{5} + 2\sqrt{6}}{3\sqrt{5} + 2\sqrt{6}}$$
$$= \frac{(2\sqrt{6} + \sqrt{5})(3\sqrt{5} + 2\sqrt{6})}{(3\sqrt{5})^2 - (2\sqrt{6})^2}$$
$$= \frac{2\sqrt{6}(3\sqrt{5} + 2\sqrt{6}) + \sqrt{5}(3\sqrt{5} + 2\sqrt{6})}{45 - 24}$$

$$=\frac{6\sqrt{30}+24+15+2\sqrt{30}}{21}=\frac{39+8\sqrt{30}}{21}$$

3. Match the following:

	Column-I		Column-II
(P)	$\boxed{\frac{1}{2+\sqrt{3}}}$	(1)	Irrational
(Q)	$64^{1/2}$	(2)	$\sqrt{56}$
(R)	$16^{3/4}$	(3)	8
(S)	$7^{1/2}8^{1/2}$	(4)	$2-\sqrt{3}$

Ans:
$$P - (1, 4), Q - 3, R - 3, S - 2$$

4. Match the following:

	Column-I		Column-II
(P)	12 is a	(1)	prime number
(Q)	2, 7 are	(2)	not a rational number
(R)	2 is a	(3)	composite number
(S)	$\sqrt{2}$	(4)	co-prime numbers

$$Ans : P - 3, Q - 4, R - 1, S - 2$$

- (P) $12 = 3 \times 4$ is a composite no.
- (Q) 2 is a prince number,
- (R) g.c.d. (2, 7) = 1
- (S) $\sqrt{2}$ is not a rational no.

5. Match the following, if $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, $\sqrt{5} = 2.236$ and $\pi = 3.141$.

	Column-I		Column-II
(P)	$\boxed{\frac{2}{\sqrt{5}-\sqrt{3}}}$	(1)	4.357
(Q)	$\frac{\pi}{2} + \frac{3}{\sqrt{5}}$	(2)	3.968
(R)	$\frac{1}{2\sqrt{5}-3\sqrt{2}}$	(3)	2.912
(S)	$\pi + 1/\sqrt{2}$	(4)	3.848

	P	Q	R	S
(a)	2	3	1	4
(b)	1	2	3	4
(c)	4	1	2	3
(d)	3	1	2	4

Ans: P - 2, Q - 3, R - 1, S - 4

(P)
$$\frac{2}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$$

= $\frac{2(\sqrt{5} + \sqrt{3})}{5 - 3}$
= $\sqrt{5} + \sqrt{3} = 2.236 + 1.732 = 3.968$

$$(Q) \frac{\pi}{2} + \frac{3}{\sqrt{5}} = \frac{\pi}{2} + \frac{3\sqrt{5}}{5} = \frac{5\pi + 6\sqrt{5}}{10}$$

$$= \frac{5 \times 3.141 + 6 \times 2.236}{10}$$

$$= \frac{15.705 + 13.416}{10} = \frac{29.121}{10} = 2.912$$

$$(R) \frac{1}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$$

$$= \frac{2\sqrt{5} + 3\sqrt{2}}{20 - 18} = \frac{2\sqrt{5} + 3\sqrt{2}}{2}$$

$$= \frac{2 \times 2.236 + 3 \times 1.414}{2}$$

$$= \frac{4.472 + 4.242}{2} = 4.357$$

$$(S) \pi + \frac{1}{\sqrt{2}} = \pi + \frac{\sqrt{2}}{2} = \frac{2\pi + \sqrt{2}}{2}$$

$$= \frac{2 \times 3.141 + 1.414}{2}$$

$$= \frac{6.282 + 1.414}{2}$$

$$= \frac{7.696}{2} = 3.848$$

6. Match the following:

	Column-I		Column-II	
(P)	If $x = \frac{\sqrt{7}}{5}$ and $\frac{5}{x} = p\sqrt{7}$,	(1)	7	
	then $p =$			
(Q)	If $x = \sqrt{5} - 2$,	(2)	0	
	then $\left(x^2 + \frac{1}{x^2}\right) =$			
(R)	If $5^{x-3} \cdot 3^{2x-8} = 455625$,	(3)	18	
	then $x =$			
(S)	If $2^x = 3^y = 6^{-z}$, then $1/x + 1/y + 1/z =$	(4)	25/7	
	tnen $1/x + 1/y + 1/z =$			

	P	Q	R	S
(a)	1	2	3	4
(b)	4	3	1	2
(c)	3	2	4	1
(d)	4	3	2	1

Ans:
$$P - 4$$
, $Q - 3$, $R - 1$, $S - 2$

(P)
$$x = \frac{\sqrt{7}}{5}$$
 (Given)
 $\frac{5}{\sqrt{7}} = p\sqrt{7}$
 $\frac{25}{\sqrt{7}} = p\sqrt{7}$
 $\frac{25}{7} = p$
(Q) $x = \sqrt{5} - 2$
 $x^2 = (\sqrt{5} - 2)^2 = 5 + 4 - 4\sqrt{5} = 9 - 4\sqrt{5}$

$$\frac{1}{x} = \frac{1}{\sqrt{5} - 2} \times \frac{\sqrt{5} + 2}{\sqrt{5} + 2}$$

$$= \frac{\sqrt{5} + 2}{5 - 4} = \sqrt{5} + 2$$

$$\frac{1}{x^2} = (\sqrt{5} + 2)^2 = 5 + 4 + 4\sqrt{5} = 9 + 4\sqrt{5}$$

$$x^2 + \frac{1}{x^2} = 18$$
(R) $5^{x-3} \cdot 3^{2x-8} = 455625$
 $5^{x-3} \cdot 3^{2x-8} = 5^4 \cdot 3^6$
Comparing like terms, we get
$$x - 3 = 4$$
and $2x - 8 = 6$

$$x = 3 + 4$$
and $2x = 14$

$$x = 7$$
(S) $2^x = 3^y = 6^{-z}$

$$2^x = 3^y = (\frac{1}{6})^z = k \qquad \text{(say)}$$

$$2 = (k)^{1/x}, 3 = (k)^{1/y} \text{ and } \frac{1}{6} = (k)^{1/z}$$
Now, $2 \times 3 = (k)^{1/x} \times (k)^{1/y}$

$$6 = (k)^{\frac{1}{x} + \frac{1}{y}} \qquad \dots (1)$$
and $(\frac{1}{6}) = (k)^{1/z}$

$$6 = (k)^{-1/z} \qquad \dots (2)$$
From (1) and (2), we get
$$\frac{1}{x} + \frac{1}{y} = \frac{-1}{z}$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$

ASSERTION AND REASON

DIRECTION: In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

- (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.
- (d) Assertion is false but reason is true.
- 1. Assertion: 0.271 is a terminating decimal and we can express this number as 271/1000 which is of the form p/q, where p and q are integers and $q \neq 0$.

Reason: A terminating or non-terminating decimal expansion can be expressed as rational number.

Ans: (c) Assertion is true but reason is false.

2. Assertion: Every integer is a rational number. Reason: Every integer 'm' can be expressed in the form $\frac{m}{1}$.

Ans: (a) Both Assertion and Reason are correct and

Reason is the correct explanation of Assertion.

3. Assertion: Rational number lying between two rational numbers a and b is a + b/2.

Reason: There is one rational number lying between any two rational numbers.

Ans: (c) Assertion is true but reason is false.

There are infinitely many rational numbers between any two given rational numbers.

4. Assertion : If $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, then $\sqrt{5} = \sqrt{2} + \sqrt{3}$.

Reason: Square root of a positive real number always exists.

Ans: (d) Assertion is false but reason is true.

$$\begin{array}{l} \sqrt{2} + \sqrt{3} \neq 5 \\ \sqrt{3} + \sqrt{2} = 1.732 + 1.414 = 3.146 \neq \sqrt{5} \text{ as } \\ \sqrt{5} = 2.236 \end{array}$$

5. Assertion: $2 + \sqrt{6}$ is an irrational number.

Reason : Sum of a rational number and an irrational number is always an irrational number.

Ans: (a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

6. Assertion: $\sqrt{2}$ is an irrational number.

Reason : A number is called irrational, if it cannot be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Ans: (a) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

7. Assertion: $\sqrt{2}$, $\sqrt{3}$ are examples of irrational numbers. Reason: An irrational number can be expressed in the form p/q.

Ans: (c) Assertion is true but reason is false.

Irrational number cannot be expressed in the form p/q, where p and q are integers, $q \neq 0$.

8. Assertion: $17^2 \cdot 17^5 = 17^3$

Reason : If a > 0 be a real number and p and q be rational numbers. Then $a^p \cdot a^q = a^{p+q}$.

Ans: (d) Assertion is incorrect but Reason is correct.

$$17^2 \cdot 17^5 = 17^{2+5} = 17^7$$

9. Assertion: $5 - \sqrt{2} = 5 - 1.414 = 3.586$ is an irrational number

Reason : The difference of a rational number and an irrational number is an irrational number.

Ans: (a) Both assertion and reason are true and reason is the correct explanation of assertion.

10. Assertion: A rational number between $\frac{1}{3}$ and $\frac{1}{2}$ is $\frac{5}{12}$.

Reason : Rational number between two numbers a and b is \sqrt{ab} .

Ans: (c) Assertion is correct but Reason is incorrect.

$$\frac{1}{2} \left(\frac{1}{3} + \frac{1}{2} \right) = \frac{5}{12}$$

WWW.CBSE.ONLINE

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer: www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education.